В чём отличия схем подключения обмоток электродвигателя звездой и треугольником

Подключение звезда и треугольник — в чем разница

Для работы электрического прибора, двигателя, трансформатора в трехфазной сети необходимо соединить обмотки по определенной схеме. Наиболее распространенными схемами соединения являются треугольник и звезда, хотя могут применяться и другие способы соединения.

Что представляет собой соединение обмоток звездой?

Трехфазный двигатель или трансформатор имеет 3 рабочих, независимых друг от друга обмоток. Каждая обмотка имеет два вывода — начало и конец. Соединение «звезда» подразумевает собой, что все концы трех обмоток соединяются в один узел, часто называемый нулевой точкой.

Отсюда выходит и понятие — нулевая точка.

Начало каждой обмотки соединяются непосредственна с фазами питающей сети. Соответственно начало каждой обмотки соединяется с одной из фаз А, В, С.

Между любыми двумя началами обмоток прилаживается фазное напряжение питающей сети, зачастую 380 или 660 В.

Что представляет собой соединение обмоток в треугольник?

Соединение обмоток в треугольник заключается в соединении конца каждой обмотки с началом следующей. Конец первой обмотки, соединяется с началом второй. Конец второй — с начало третей.

Конец третей обмотки создает электрический контур, поскольку замыкает электрическую цепь.

При таком соединении к каждой обмотки прилаживается линейное напряжение, обычно равное 220 или 380 В.

Такое соединение физически реализуется с помощью металлических перемычек, которые должны быть предусмотрены заводской комплектацией электрического оборудования.

Разница между соединением обмотки в треугольник и звезду

Основная разница заключается в том, что, используя одну питающую сеть, можно достигать разных параметров электрического напряжения и тока в приборе или аппарате. Конечно, данные способы соединения отличаются реализацией, но важна именно физическая составляющая отличия.

Наиболее часто применяется соединение обмоток в звезду, что объясняется щадящим режимом для электрического привода или трансформатора. При соединении обмоток в звезду, ток протекающий по обмоткам имеет меньшие значение нежели при соединении в треугольник. В тот момент, как напряжение больше на величину корня из 1,4.

Применение способа соединения треугольник, зачастую используется в случаях мощных механизмов и больших пусковых нагрузок.

Имея большие показатели тока, протекающего по обмотки, двигатель получает большие показатели ЕДС самоиндукции, что в свою очередь гарантирует больший вращающий момент.

Важно

Имея большие пусковые нагрузки и одновременно используя схему соединения звезда, можно нанести урон двигателю. Это связано с тем, что двигатель имеет меньшие значение тока, что приводит к меньшим показателям величины вращающегося момента.

Момент пуска такого двигателя и выход его на номинальные параметры может быть продолжительным, что может привести к тепловому воздействию тока, которые во время коммутации может превышать номиналы тока в 7-10 раз.

Преимущества соединения обмоток в звезду

Основные преимущества соединения обмоток в звезду заключаются в следующем:

  • Понижения мощности оборудования с целью повышения надежности.
  • Устойчивый режим работы.
  • Для электрического привода такое соединение дает возможность плавного пуска.

Некоторое электрическое оборудование, которое не предназначены для работы на других способах соединения, имеет внутренне соединение концов обмоток. На клеммник выводится лишь три вывода, которые представляют собой начало обмоток. Такое оборудование легче в подключении и может монтироваться в отсутствии грамотных специалистов.

Основными преимуществами соединения обмоток в треугольник являются:

  1. Повышения мощности оборудования.
  2. Меньшие пусковые токи.
  3. Большой вращающийся момент.
  4. Увеличенные тяговые свойства.

Оборудование с возможностью переключения типа соединения со звезды на треугольник

Зачастую электрическое оборудование имеет возможность работать как на звезде, так и на треугольнике. Каждый пользователь должен самостоятельно определить необходимость соединения обмоток в звезду или треугольник.

В особо мощных и сложных механизмах, может применяться электрическая схема с комбинированием треугольника и звезды. В таком случае, в момент пуска, обмотки электрического двигателя соединяются в треугольник.

После выхода двигателя на номинальные показатели, с помощью релейно-контакторной схемы треугольник переключается на звезду.

Таким способом достигается максимальная надежность и продуктивность электрической машины, без риска нанести ей урон или вывести её из строя.

Посмотрите так-же интересное видео на эту тему:

Разница между соединением обмотки в треугольник и звезду

Основная разница заключается в том, что, используя одну питающую сеть, можно достигать разных параметров электрического напряжения и тока в приборе или аппарате. Конечно, данные способы соединения отличаются реализацией, но важна именно физическая составляющая отличия.

Наиболее часто применяется соединение обмоток в звезду, что объясняется щадящим режимом для электрического привода или трансформатора. При соединении обмоток в звезду, ток протекающий по обмоткам имеет меньшие значение нежели при соединении в треугольник. В тот момент, как напряжение больше на величину корня из 1,4.

Применение способа соединения треугольник, зачастую используется в случаях мощных механизмов и больших пусковых нагрузок. Имея большие показатели тока, протекающего по обмотки, двигатель получает большие показатели ЕДС самоиндукции, что в свою очередь гарантирует больший вращающий момент. Имея большие пусковые нагрузки и одновременно используя схему соединения звезда, можно нанести урон двигателю. Это связано с тем, что двигатель имеет меньшие значение тока, что приводит к меньшим показателям величины вращающегося момента.

Момент пуска такого двигателя и выход его на номинальные параметры может быть продолжительным, что может привести к тепловому воздействию тока, которые во время коммутации может превышать номиналы тока в 7-10 раз.

Какой двигатель можно подключать в “звезду-треугольник”, а какой нет?

Двигатели наша (и не наша) промышленность выпускает разные. Но наиболее ходовые у нас (большинство читателей подтвердит) – низковольтные, для работы в сетях 0,4 кВ 50 Гц. Мы будем рассматривать как раз такие асинхронники. Они бывают на 2 вида напряжения – 220/380 и 380/660 В.

В чем отличия? В номинальных напряжениях питания. Первое число – это “треугольник”, второе – “звезда”. Такое разделение идёт в основном от мощности, “граница” проходит примерно по 4 кВт.

Как видим, оба вида имеют вариант подключения 380 В. В первом случае для этого нужно собрать схему “звезда”, во втором – “треугольник”.

Подробнее рассмотрим работу на этих напряжениях.

220/380 В

Вариант с низкими напряжениями 220/380 можно подключать на 220 В только в однофазную сеть через фазосдвигающий конденсатор либо от однофазного преобразователя частоты

И только в “Треугольнике”! А 380 В – можно подключать в трехфазную сеть через контактор, либо УПП, либо частотник только в “Звезде”! Важно, что такие двигатели для работы в схеме “Звезда/Треугольник” использовать нельзя!

Двигатель на 220/380 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”

Центральная точка звезды, обозначенная “0”, может быть подключена к нейтрали N, если она, конечно, есть. Но этого никто никогда не делает – ток по этому проводу будет мизерный, ибо двигатель – нагрузка симметричная.

Реальные примеры движков 220-380:

Двигатель на 220/380 В, который на 380 В можно подключать только в “Звезду”

Шильдик электродвигателя на напряжение 220 – 380 В. Для схемы “Звезда-Треугольник” не подходит!!!

Как будет выглядеть подключение подобного двигателя в коробке:

Подключение в “Звезду” двигателя на 220 – 380 В

Внизу “тройная” клемма – та самая точка “0”, которая никуда не подключается.

380/660 В

Вариант двигателя с высокими напряжениями 380/660 идеально подходит для работы в схеме “Звезда/Треугольник”. Для работы напрямую (через контактор или ПЧ) обмотки нужно собрать в “Треугольник”.

Двигатель на 380/660 В. Напряжения питания при включении по схемам “Звезда” и “Треугольник”

Напряжение питания 660 В в реальной жизни не используется, а схема, показанная справа, используется для “раскрутки” ротора.

Реальные примеры:

Шильдик двигателя 380 – 660 В, который может работать в схеме “Звезда – Треугольник”

Вот этот же двигатель, его коробка борно, подключен в треугольник:

Обмотки двигателя подключены в треугольник на 380 В

Как же так? – скажете вы. 22 кВт на 380? Напрямую, что ли? Нет конечно, иначе при его включении “тухла” бы сеть всего цеха, а здоровье энергосетей ждало бы серьезное испытание. Тем более, что он раскручивает тяжелый маховик вырубного пресса (справа видна полумуфта). Двигатель подключен через частотник, в этом весь секрет.

Схема подключения звезда

Произошёл тут такой случай. Принёс человек в ремонт новый двигатель, который проработал у него 10 секунд и задымил. Двигатель он подключил треугольником в обычную трехфазную сеть, а на шильдике двигателя есть схема, на которой написано: треугольник – 230 В. звезда – 400 В. В общем, подключил он неправильно, потому двигатель и сгорел.Для тех, кто не понимает, почему нельзя делать так, как сделал сделал тот товарищ, спаливший двигатель, предназначена эта статья. Вот всем известные схемы подключения треугольником (D) и звездой (Y):

Совершенно неважно как вы подключаете двигатель: звездой или треугольником. Важно только то, какое напряжение вы подаёте на обмотки двигателя. Будет ли это напряжение получаться как межфазное (треугольник) или как фазное (между фазой и нулевой точкой – звезда) – двигателю это совершенно неважно

Будет ли это напряжение получаться как межфазное (треугольник) или как фазное (между фазой и нулевой точкой – звезда) – двигателю это совершенно неважно

Если у вас есть двигатель с номинальным напряжением обмотки 220 В и есть две разные трёхфазные сети, у одной из которых линейное напряжение

380 В (220 В на фазу), а у другой – 220 В (127 В на фазу), то к первой вы можете подключать двигатель звездой, а ко второй – треугольником, разницы для двигателя не будет никакой, отличаться будут лишь токи, протекающие в проводниках на линии, ведущей к двигателю.

Линейное напряжение трёхфазной сети – это межфазное напряжение, именно оно обозначается на шильдиках двигателей. Фазное напряжение (между фазой и нейтралью) на шильдиках не обозначается.

Условно говоря, вы можете считать, что на шильдике обозначено фазное напряжение, но только в том случае, если собираетесь подключать двигатель только к одной фазе через конденсатор.

Для сетей переменного тока 50 Гц линейное напряжение выше фазного в квадратный корень из трёх раз (т.е. примерно в 1.73 раза, т.е. 220 х 1.73 = 380).

Для такого двигателя на шильдике будет написано: D/Y 220V / 380V, 4.9А / 2.8А.

Соответственно, в этих двух случаях отличаются только токи в проводниках, ведущих к двигателю (именно они указаны на шильдике, в то время как ток на обмотке будет одинаковый, что видно на рисунке сверху). Следовательно, для России (линейное напряжение 400 В) для такого двигателя надо использовать схему подключения звезда.

Номинальное напряжение обмотки большинства двигателей при частоте тока 50 Гц обычно составляет либо 127 В , либо 230 В, либо 400 В, либо 690 В. Ну, или как было раньше: 220, 380, 660 В соответственно.

D 230V / Y 400V

Для того, чтобы двигатель можно было так подключить в однофазную сеть, его номинальное напряжение каждой обмотки должно быть равно фазному напряжению сети. Это значит, что если двигатель планируется использовать в России или Европе, то номинальное напряжение обмотки должно быть равно 230 В. В таком случае этот двигатель можно будет использовать как в трёхфазной сети с линейным напряжением 400 В (подключение звезда), так и в однофазной сети 230 В (подключение треугольником через конденсатор). Это те самые двигатели, где на шильдике написано напряжение D 220V / Y 380V.

Недостатки схемы

Несмотря на то что классическая схема подключения проста и надежна, она имеет свои определенные недостатки.

Во-первых, очень важно точно определить нагрузку на вал электродвигателя. В противном случае он будет слишком долго набирать обороты, что, в свою очередь, исключит возможность быстрого переключения на схему треугольника при помощи токового реле

В этом режиме нежелательно долго эксплуатировать электрическое устройство.

Во-вторых, при такой схеме подключения возможен перегрев обмоток, из-за чего специалисты рекомендуют установить в схему дополнительное тепловое реле.

В-третьих, при использовании современных временных реле необходимо точно соблюдать паспортную нагрузку на вал электрического двигателя.

Соединение обмоток генератора звездой

ТОЭ › ТОЭ: Трёхфазные цепи

Соединение обмоток генератора звездой или треугольником позволяет уменьшить число проводов, соединяющих генератор с приемником, с шести при несвязанной системе до четырех или до трех.

Рисунок 12.4 Соединение обмоток генератора звездой

При соединении звездой (рис. 12.4) к началам обмоток генератора А, В, С присоединяют три линейных провода (желтый, зеленый, красный), идущих к приемнику. Концы обмоток X, У, Z объединяют в узел, называемый нейтралью генератора или его нейтральной точкой N. В четырехпроводной системе к нейтрали генератора присоединяется нейтральный провод (синий). В трехпроводной системе он отсутствует.

Токи протекающие по линейным проводам называются линейными токами Iл. Так как в схеме соединения звездой линейный провод включен последовательно с фазой то линейный ток будет равен фазному.

Напряжения между линейными и нейтральным проводами называются фазными напряжениями: uA, uB и uC. Фазное напряжение отличается от фазной ЭДС на падение напряжения в обмотке генератора.

В дальнейшем будем считать, что падениями напряжения в фазах генератора можно пренебречь т.е. принять uA= eA, uB = eB и uC = eC или считать что заданы напряжения uA, uB и uC. Напряжения между линейными проводами называются линейными: uAB, uBC и uCA. Положительное направление напряжения указывается порядком записи индексов, например, положительное направление напряжения uAB от точки А к точке B (рис. 12.4).

Мгновенные значения фазных напряжений равны разностям мгновенных значений потенциалов начала и концов соответствующих обмоток:

uA= φA— φX, uB = φB — φY, uC = φC — φZ

Мгновенные значения линейных напряжений равны разностям мгновенных значений потенциалов начал соответствующих обмоток, т.е.

uAB= φA— φB, uBC = φB — φC, uCA = φC — φA (12.5)

Концы обмоток соединены в узел, поэтому потенциалы их одинаковы φx= φy= φz.

Мгновенное значение линейного напряжения между проводами A и B

По аналогии для двух других линейных напряжений можем написать

uBC = uB – uC; uCA = uC – uA.

Рис. 12.5 Векторная диаграмма фазных и линейных напряжений при соединении обмоток генератора звездой

Следовательно, можно утверждать, что мгновенное значение любого линейного напряжения равно алгебраической разности мгновенных значений соответствующих фазных напряжений. Аналогично при символической записи любое комплексное линейное напряжение равно разности соответствующих фазных комплексных напряжений, т.е.

На векторной диаграмме (рис. 12.5) изображены три вектора фазных напряжений

Вектор любого линейного напряжения равен разности соответствующих векторов фазных напряжений. Из векторной диаграммы (рис. 12.5) видно, что векторы двух смежных фазных напряжений и вектор соответствующего линейного напряжения, например векторы образуют замкнутый треугольник. При симметричной системе напряжений действующие значения фазных напряжений равны друг другу, т.е. UA = UB = UC = UФ, и действующие значения линейных напряжений одинаковы, т.е. UAB = UBC = UCA = UЛ. Поэтому треугольник равнобедренный и имеет углы 30, 30 и 120 градусов. Из треугольника находим, что

или

т.е. линейное напряжение в √З раз больше фазного напряжения. Кроме того, из рис. 12.5 следует, что звезда векторов линейных напряжений повернута на 30° в сторону вращения векторов относительно звезды векторов фазных напряжений.

Алгебраическая сумма линейных напряжений всегда равна нулю

Действительно, приняв во внимание выражение 12.5 можно написать. или

или

У симметричной трехфазной системы равна нулю и сумма фазных напряжений:

как и сумма фазных ЭДС (рис. 12.2)

В этом можно убедиться, сложив соответствующие векторы, как это показано для фазных напряжений на рис. 12.5.

Трехфазная система соединённая в звезду получила наибольшее распространение, так как в ней можно получить на нагрузке одновременно два напряжения линейное (√З * фазное, к примеру 220*√З = 380 в) и фазное (к примеру 220 в) . При этом нагрузка может быть как трехфазной так и однофазной, симметричной и не симметричной.

Как управлять переключениями электродвигателя

Часто для пуска электрического двигателя большой мощности используется переключение соединения «треугольник» в «звезду», это необходимо для снижения параметров тока при пуске. Иными словами, пуск двигателя происходит в режиме «звезда», а вся работа осуществляется на соединении «треугольник». Для этой цели используется контактор на три фазы.

Необходимо при автоматическом переключении выполнить обязательные условия:

  • сделать блокировку контактов от одновременного срабатывания;
  • обязательное исполнение работы, с задержкой времени.

Задержка времени необходима для 100%-го отключения соединения «звезда», иначе при включении соединения «треугольник» возникнет между фазами КЗ. Используется реле времени (РВ), которое выполняет задержку переключения на интервал от 50 до 100 миллисекунд.

Какими способами можно сделать задержку времени переключений

Когда применяется схема «звезда и треугольник», надо обязательно выполнять задержку времени включения соединения (Δ), пока не отключится соединение (Y), специалистами отдается предпочтение трем методам:

  • с помощью контакта нормально разомкнутого в реле времени, который проводит блокировку схемы «треугольник», когда происходит пуск электродвигателя, а момент переключения контролирует токовое реле (РТ);
  • используя таймер в реле времени современного исполнения, который имеет способность переключать режимы с интервалом от 6 до 10 секунд.

Стандартная схема переключения

Классический вариант переключения со «звезды» на «треугольник» специалистами считается надежным способом, он не требует больших затрат, прост в исполнении, но, как и любой другой способ, имеет недостаток — это габаритные размеры РВ (реле времени). Этот тип РВ гарантированно выполняет задержку времени намагничиванием сердечника, а чтобы размагнитить его, требуется время.

Схема смешанного (комбинированного) включения работает следующим образом. Когда оператор включает трехфазный выключатель (АВ), пускатель электродвигателя приготовлен к действию. Через контакты кнопки «Стоп», нормально замкнутого положения и через нормально разомкнутые контакты кнопки «Пуск», которую нажимает оператор, электрический ток проходит в катушку контактора (КМ). Контакты (БКМ) обеспечивают самоподхват силовых контактов и удерживают их во включенном положении.

Реле в схеме (КМ) обеспечивает способность отключения оператором кнопкой «Стоп» электрический двигатель. Когда «фаза управления» проходит через пусковую кнопку, она также проходит замкнутые нормально расположенные контакты (БКМ1) и контакты (РВ) — запускается контактор (КМ2), силовые контакты его обеспечивают подачу напряжения на соединение (Y), начинается раскрутка ротора электродвигателя.

Когда оператор осуществляет пуск двигателя, контакты (БКМ2) в контакторе (КМ2) размыкаются, это порождает неработающее состояние силовых контактов (КМ1), которые обеспечивают питание соединения двигателя Δ.

Токовое реле (РТ) срабатывает практически сразу из-за высоких значений тока, которое включено в цепь токовых трансформаторов (ТТ1) и (ТТ2). Управляющая цепь катушки контактора (КМ2) шунтируется контактами токового реле (РТ), что не дает сработать (РВ).

В цепи контактора (КМ1) блок контактов (БКМ2) размыкается при запуске (КМ2), что не дает сработать катушке (КМ1).

С набором нужного параметра оборотов вращения ротора двигателя контакты токового реле размыкаются, так как пусковой ток уменьшается в управлении контактора (КМ2), одновременно с размыканием контактов, подающих напряжение на соединение обмотки (Y), БКМ2 соединяются, что приводит в рабочее положение контактор (КМ1), а в его цепи блок контактов БКМ2 размыкается, и, как следствие, обесточивается РВ. Преобразование включения «треугольника» в «звезду» происходит после остановки двигателя.

Важно! Временное реле отключается не сразу, а с задержкой, что дает некоторое время в цепи (КМ1) контактам реле быть замкнутым, этим обеспечивается пуск (КМ1) и работа двигателя по схеме «треугольник»

Недостатки стандартной схемы

Несмотря на надежность работы классической схемы переключения с одного соединения на другое соединение электрического двигателя большой мощности, она имеет свои неудобства:

надо правильно делать расчет нагрузки на вал электродвигателя, иначе он будет долго набирать обороты, что не даст быстро сработать токовому реле и затем переключиться на работу по соединению Δ, а также в этом режиме крайне нежелательно долго эксплуатировать двигатель;

Пуск электродвигателя способом звезда, треугольник

Автор DUNDUK На чтение 3 мин. Опубликовано 11.06.2018

Пуск короткозамкнутого электродвигателя с переключением со звезды в треугольник применяют для снижения пускового тока. Пусковой ток при запуске может превышать рабочий ток электродвигателя в 5-7 раз. У двигателей большой мощности пусковой ток бывает настолько велик, что может вызвать перегорание различных предохранителей, отключение автоматического выключателя и привести к значительному снижению напряжения. Уменьшение напряжения снижает накал ламп, уменьшает вращающий момент электродвигателей, может вызвать отключение контакторов и магнитных пускателей. Поэтому многие стремятся уменьшить пусковой ток. Это достигается несколькими способами, но все они в итоге сводятся к понижению напряжения в цепи статора электродвигателя на период пуска . Для этого в цепь статора на период пуска вводят реостат, дроссель, автотрансформатор, либо переключают обмотку со звезды в треугольник.

Действительно, перед пуском и в первый период пуска обмотки соединены в звезду, поэтому к каждой из них подводится напряжение, в 1,73 раза меньшее номинального, и, следовательно, ток будет значительно меньше, чем при включении обмоток на полное напряжение сети. В процессе пуска электродвигатель увеличивает частоту вращения и ток снижается. После этого обмотки переключают в треугольник.

Схема управления

Подключение оперативного напряжения, через контакт реле времени К1 и контакт К2, в цепи катушки контактора К3. Включение контактора К3, размыкает контакт К3 в цепи катушки контактора К2 (блокировка ошибочного включения), замыкается контакт К3, в цепи катушки контактора К1 совмещенного с пневматическим реле времени.

Включение контактора К1, замыкает контакт К1 в цепи катушки контактора К1 (самоподпитка), одновременно включается пневматическое реле времени, которое размыкает через определенное время свой контакт К1 в цепи катушки контактора К3, а также замыкает свой контакт К1 в цепи катушки контактора К2. Отключение контактора К3, замыкается контакт К3 в цепи катушки контактора К2. Включение контактора К2, размыкает контакт К2 в цепи катушки контактора К3 (блокировка ошибочного включения).

Схема питания

На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой. Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.

Предупреждения

  1. Переключение со звезды в треугольник допустимо лишь для двигателей с легким режимом пуска, так как при соединении в звезду пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Значит, этот способ снижения пускового тока не всегда пригоден, и если нужно снизить пусковой ток и одновременно добиться большого пускового момента, то берут электродвигатель с фазным ротором, а в цепь ротора вводят пусковой реостат.
  2. Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, т. е. имеющие обмотки, рассчитанные на линейное напряжение сети.

Переключение с треугольника в звезду

Известно, что недогруженные электродвигатели работают с очень низким коэффициентом мощности cos§. Поэтому рекомендуется недогруженные электродвигатели заменять менее мощными. Если, однако, выполнить замену нельзя, а запас мощности велик, то не исключено повышение cos? переключением с треугольника в звезду. Нужно при этом измерить ток в цепи статора и убедиться в том, что он при соединении в звезду не превышает при нагрузке номинального тока, в противном случае электродвигатель перегреется.

elektrikdom.com

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий