Твердотельное реле своими руками: инструкция по сборке и советы по подключению

Твердотельные реле по типу переключения

С коммутацией перехода через ноль

Посмотрите внимательно на диаграмму

Такие ТТР на выходе коммутируют переменный ток. Как вы здесь можете заметить, когда мы подаем на вход такого реле постоянное напряжение, у нас коммутация на выходе происходит не сразу, а только тогда, когда переменный ток  достигнет нуля. Выключение происходит подобным образом.

Для чего это делается? Для того, чтобы уменьшить влияние помех на нагрузках и уменьшить импульсный бросок тока, который может привести к выходу нагрузки из строя, если тем более нагрузкой будет являться схема на полупроводниковых радиоэлементах.

Схема подключения и внутреннее строение такого ТТР выглядит примерно вот так:

управление постоянным током
управление переменным током

Мгновенного включения

Здесь все намного проще. Такое реле сразу начинает коммутировать нагрузку при появлении на нем управляющего напряжения. На диаграмме видно, что выходное напряжение появилось сразу, как только мы подали управляющее напряжение на вход. Когда мы уже снимаем управляющее напряжение, реле выключается также, как и ТТР с контролем перехода через ноль.

В чем минус данного ТТР? При подаче на вход управляющего напряжения, у нас на выходе могут возникнуть броски тока,  а в следствии и электромагнитные помехи. Поэтому, данный тип реле не рекомендуется использовать в радиоэлектронных устройствах, где есть шины передачи данных, так как в этом случае помехи могут существенно помешать передаче информационных сигналов.

Внутреннее строение ТТР и схема подключения нагрузки выглядят примерно вот так:

С фазовым управлением

Здесь все намного проще. Меняя значение сопротивления, мы тем самым меняем мощность на нагрузке.

Примерная схема подключения выглядит вот так:

Как сделать ТТР своими руками?

Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.

Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.

Электронные компоненты для сборки схемы

Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:

  1. Оптопара типа МОС3083.
  2. Симистор типа ВТ139-800.
  3. Транзистор серии КТ209.
  4. Резисторы, стабилитрон, светодиод.

Все указанные электронные компоненты спаиваются навесным монтажом согласно следующей схеме:

Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.

А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.

Проверка собранной схемы на работоспособность

Собранную схему нужно проверить на работоспособность. Подключать при этом напряжение нагрузки 220 вольт в цепь коммутации через симистор необязательно. Достаточно подключить параллельно линии коммутации симистора измерительный прибор – тестер.

Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».

Устройство монолитного корпуса

Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.

Поверхность алюминиевой пластины должна быть ровной. Дополнительно необходимо обработать обе стороны – зачистить мелкой шкуркой, отполировать.

На следующем этапе подготовленная пластина оснащается «опалубкой» – по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.

Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.

Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.

Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.

Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).

Приготовление компаунда и заливка корпуса

Под изготовление твёрдого тела электронного устройства потребуется изготовить компаундную смесь. Состав смеси компаунда делается на основе двух компонентов:

  1. Эпоксидная смола без отвердителя.
  2. Порошок алебастра.

Благодаря добавлению алебастра мастер решает сразу две задачи – получает исчерпывающий объём заливного компаунда при номинальном расходе эпоксидной смолы и создаёт заливку оптимальной консистенции.

Смесь нужно тщательно перемешать, после чего можно добавить отвердитель и вновь тщательно перемешать. Далее аккуратно заливают «навесной» монтаж внутри картонного короба созданным компаундом.

Заливку делают до верхнего уровня, оставив на поверхности лишь часть головки контрольного светодиода. Первоначально поверхность компаунда может выглядеть не совсем гладкой, но спустя некоторое время картинка изменится. Останется только дождаться полного застывания литья.

По сути, применить можно любые подходящие для литья растворы. Главный критерий – состав заливки не должен быть электропроводящим, плюс должна формироваться хорошая степень жёсткости литья после застывания. Литой корпус твердотельного реле является своего рода защитой электронной схемы от случайных физических повреждений.

Другие современные компьютеры на электромагнитных реле

Часть из них более-менее повторяла проект Гарри, часть лишь демонстрировала то, что создание такого компьютера возможно. Например, DUO 14 Premium, показанный на картинке ниже, может выполнять программу, содержащую до 8 несложных команд.


Итак, я запланировал создать компьютер, похожий на HPRC. Хотелось, чтобы на нем можно было бы хоть что-то реальное посчитать, а также, чтобы все его элементы были наглядными – можно было бы проследить работу АЛУ, регистров, счетчика инструкций и т.п. Начать изготовление я решил с АЛУ. Чтобы определить предъявляемые к нему требования, я в общих чертах разработал набор инструкций, а также прикинул какие понадобятся шины и сигналы. АЛУ имеет параллельную конструкцию (все биты вычисляются одновременно) и предназначено для 8-битных вычислений.

Я сразу решил, что нужно делать модуль вычитания. Во многих других компьютерах этот модуль не реализован, так как его работу можно выполнять с помощью отрицания и сложения. Таким образом, АЛУ будет выполнять следующие операции: сложение, вычитание (с переносом и без), логические И, ИЛИ, НЕ, ИСКЛЮЧАЮЩЕЕ ИЛИ, а также сдвиги вправо (с переносом или по кругу). Схемы для сложения и логических операций я взял из HPRC.

Еще одна редко встречающаяся фича заключается в том, что результат вычислений защелкивается в теневой регистр. Он нужен для того, чтобы один и тот же регистр общего назначения мог быть использован как вход и как выход.

Так как АЛУ пока должен работать без других компонентов компьютера, поэтому для его отладки к катушкам реле подключены тумблеры, подающие на них питание. Результаты вычислений можно наблюдать с помощью светодиодов, подключенных к выходам схем. Независимо от защелкиваемого результата, вычислительные блоки работают постоянно, поэтому с помощью индикаторов можно одновременно наблюдать результаты всех операций.

Твердотельное реле своими руками

Твердотельное реле (ТТР) или Solid State Relay (SSR) — это электронные устройства, которые выполняют те же самые функции, что и электромеханическое реле, но не содержит движущихся частей. Серийные твердотельные реле используют технологии полупроводниковых устройств, таких как тиристоры и транзисторы.

То есть вместо подвижных контактов в ТТР используются электронные полупроводниковые ключи, в которых цепи управления имеют гальваническую развязку с силовыми, коммутируемыми цепями. Благо сейчас переключательных полевых транзисторов приобрести нет никаких проблем. Таким образом, для построения твердотельного реле нам потребуется MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) транзистор, русский эквивалент термина — МОП-транзистор или полевой транзистор с изолированным затвором, и оптрон. На страницах сайта есть статьи, посвященные транзисторным ключам с оптической изоляцией – «Транзисторный ключ переменного тока»

В данной статье рассмотрен ключ для коммутации переменного тока. Используя SMD компоненты по этой схеме можно изготовить ТТР переменного тока. Часть деталей монтируется на печатной плате, которая крепится к алюминиевой положке. Транзисторы устанавливаются на подложку через слюдяные прокладки. Конденсатор С1 лучше брать или танталовый или керамический. Его емкость можно уменьшить. Еще одна статья – «Транзисторный ключ с оптической развязкой»

В этой схеме к качестве коммутирующих транзисторов используются биполярные транзисторы разных структур.

Есть еще одна схема гальванически развязанного ключа на моп-транзисторе с защитой от предельного тока нагрузки. О нем шла речь в статье «Mощный ключ постоянного тока на полевом транзисторе»

Все это хорошо, если напряжения, с которыми работают ТТР реализованные на MOSFET, позволяют управлять этими полевыми транзисторами. А как быть с коммутацией напряжения, например 3,3 вольта. Для открывания полевого транзистора этого напряжения явно не достаточно. Нужен какой-то преобразователь, способный поднять напряжение управления хотя бы до пяти вольт. Классический импульсный преобразователь использовать для реле – слишком громоздко. Но есть другие преобразователи – оптические, например — TLP590B.

Как сделать ТТР своими руками?

Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.

Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.

Электронные компоненты для сборки схемы

Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:

  1. Оптопара типа МОС3083.
  2. Симистор типа ВТ139-800.
  3. Транзистор серии КТ209.
  4. Резисторы, стабилитрон, светодиод.

Все указанные электронные компоненты спаиваются навесным монтажом согласно следующей схеме:

Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.

А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.

Проверка собранной схемы на работоспособность

Собранную схему нужно проверить на работоспособность. Подключать при этом напряжение нагрузки 220 вольт в цепь коммутации через симистор необязательно. Достаточно подключить параллельно линии коммутации симистора измерительный прибор – тестер.

Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».

Устройство монолитного корпуса

Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.

Поверхность алюминиевой пластины должна быть ровной. Дополнительно необходимо обработать обе стороны – зачистить мелкой шкуркой, отполировать.

На следующем этапе подготовленная пластина оснащается «опалубкой» – по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.

Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.

Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки. Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.

Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.

Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).

Приготовление компаунда и заливка корпуса

Под изготовление твёрдого тела электронного устройства потребуется изготовить компаундную смесь. Состав смеси компаунда делается на основе двух компонентов:

  1. Эпоксидная смола без отвердителя.
  2. Порошок алебастра.

Благодаря добавлению алебастра мастер решает сразу две задачи – получает исчерпывающий объём заливного компаунда при номинальном расходе эпоксидной смолы и создаёт заливку оптимальной консистенции.

Смесь нужно тщательно перемешать, после чего можно добавить отвердитель и вновь тщательно перемешать. Далее аккуратно заливают «навесной» монтаж внутри картонного короба созданным компаундом.

Заливку делают до верхнего уровня, оставив на поверхности лишь часть головки контрольного светодиода. Первоначально поверхность компаунда может выглядеть не совсем гладкой, но спустя некоторое время картинка изменится. Останется только дождаться полного застывания литья.

По сути, применить можно любые подходящие для литья растворы. Главный критерий – состав заливки не должен быть электропроводящим, плюс должна формироваться хорошая степень жёсткости литья после застывания. Литой корпус твердотельного реле является своего рода защитой электронной схемы от случайных физических повреждений.

Выбор твердотельного реле

При покупке ТТР стоит учесть ряд особенностей устройства, что поможет сделать правильный выбор.  Для сравнения классические устройства способны выдерживать перегрузки, возникающие на небольшое время и не превышающие полутора или двукратного номинального тока.

Если правильно подойти к вопросу эксплуатации, хватит обычной чистки контактов.

В случае с твердотельными реле ситуация обстоит хуже. Если номинальный параметр тока превышен в 1,5 и более раз, прибор можно выбросить. Вот почему при выборе ТТР для питания активной нагрузки стоит брать запас по току в два-четыре крата.

Если изделие планируется применять в цепи пуска АД, этот показатель стоит увеличить в шесть-десять раз. При таком подходе придется переплатить, но зато повышается срок службы подключенного прибора и надежность его работы.

Реле контроля фаз и напряжения – для чего предназначено, устройство и принцип работы

Сообщества ВАЗ Ремонт и Доработка Блог Установка дополнительного реле стартера

Почитал на форумах, подобная проблема не только у меня, может ещё кому-то поможет.Долго мучался с проблемой завода авто на горячую. Особенно проблема проявлялась летом. Стартер временами просто отказывался крутиться, поворачиваешь ключь, щелчёк, притухает немного панель приборов и всё… стартёр молчит.Проблема непостоянная, такое может произойти раз в неделю, может и через день. Весь день можно ездить на машине, глушить, заводить всё работает и в какой-нибудь неподходящий момент перестанет реагировать на ключь. Остановишься на заправке или у магазина и всё.Начинаешь бегать с отвёрткой в капот и замыкать контакты на втягивающем, с отвёртки заводится.Если завести отвёрткой, а потом заглушить, то заведёться с ключа без проблем и снова можно ездить неизвестное количество дней или часов т.к. проблема плавающая и непостоянная.За время поиска причины перебрал стартер, сменил щетки, поставил новое втягивающее(только зря), зачистил все контакты, зачистил контактную группу замка зажигания.Всё это делал поэтапно т.к. после каждых действий проблема исчезаза кажется, но только на время, поездишь месяц и снова нежданчик.Как выяснил, проблема возникала при малейшем просаживании аккумулятора, будто включение «карлсона», при нагреве двигателя или прослушивание музыки на заглушенном двигателе. После этого через замок зажигания просто не хватало напряжения, где-то видимо потери напряжения от плохих контактов, возможно контактную группу нужно было поменять, а не зачищать( но не факт, что новая бы долго прослужила).Решил поставить реле стартера заодно сделал дополнительную массу.Купил 4-х контактное реле на 30А, пять разьёмов «мама» один «папа» и пару кольцевых разъёмов.

Из закрамов достал кабель БПВЛ 4,0 Сделал его в три слоя обжал и облудил контакты и сверху всё закрыл гофрой.Прокинул массу на генератор и на стартёр.Также заменил родную массу кузова, уж больно хлипкая была.

Известные модели

Расшифровка маркировки

Основные характеристики зависят от многих факторов. К популярным отечественным моделям, произведенным фирмами КИПпрбор, Протон, Cosmo, относятся:

  • ТМ-О. Устройства со встраиваемой схемой «ноль», через которую проходит переход фазы.
  • ТС. Модели, которые выключаются в любой момент времени.
  • Наиболее популярные и используемые – ТМВ, ТСБ, ТСМ, ТМБ, ТСА. Они обладают выходной RC цепью.
  • Тс/ТМ – силовые. Токи достигают значений 25 мА.
  • ТСА, ТМА – применяются в чувствительных приборах.
  • ТСБ, ТМБ – низковольтные модели. Напряжение не превышает 30 В.
  • ТСВ, ТМВ – высоковольтные. Напряжение достигает 280 В.

К иностранным аналогам относятся изделия, произведенные фирмами Carlo Gavazzi, Gefran, CPC.

Расшифровка

Модели SSR, TSR (однофазные и трехфазные соответственно) являются самыми популярными. Их сопротивление равно 50 Мом и более при напряжении 500 В.

Записывается обозначение как SSR -40 D A H. SSR или TSR обозначает число фаз. 40 – нагрузка в Амперах. Буквой обозначается сигнал на входе (L 4-20 мА, D – 3-32 В при постоянном токе, V – переменное сопротивление, A – 80-250 В при переменном токе). Следующая буква – входное напряжение (А – переменное, D – постоянное). Последняя буква – диапазон выходных напряжений (Н – 90-480 В, нет буквы – 24-380 В).

Принцип работы твердотельного реле

Рис. №3. Схема работы с использованием твердотельного реле. В положении выключено, когда на входе наблюдается 0 В, твердотельное реле не дает пройти току через нагрузку. В положение включено, на входе есть напряжение, ток идет через нагрузку.

Основные элементы регулируемой входной цепи переменного напряжения.

  1. Регулятор тока служит для поддержки неизменного значения тока.
  2. Двухполупериодный мост и конденсаторы на входе в устройство служат для преобразования сигнала переменного тока в постоянный.
  3. Встроенный оптрон оптической развязки, на него подается питающее напряжение и через него протекает входной ток.
  4. Тригерная цепь служит для управления эмиссией света встроенного оптрона, в случае прекращения подачи входного сигнала ток прекратит свое протекание через выход.
  5. Резисторы, расположенные в схеме последовательно.

В твердотельных реле используется два распространенных типа оптических развязок – семистор и транзистор.

Симистор обладает следующими преимуществами: включение в состав развязки тригерной цепи и ее защищенность от помех. К недостаткам следует отнести дороговизну и необходимость больших величин тока на входе в устройство, необходимого для переключения выхода.

Рис. №4.  Схема реле с семистором.

Тиристор  — не нуждается в наличии большого значения тока для переключения выхода. Недостаток – нахождение триггерной цепи вне развязки, а значит большее число элементов и слабая защита от помех.

Рис. №5. Схема реле с тиристором.

Рис. №6. Внешний вид и расположение элементов в конструкции твердотельного реле с транзисторным управлением.

Принцип работы твердотельного реле типа SCR полупериодного управления

При прохождении тока через реле исключительно в одном направлении величина мощности снижается почти на 50%. Для предотвращения этого явления используют  два параллельно подключенных  SCR, расположенные на выходе (катод соединяется анодом другого).

Рис. №7. Схема принципа работы полупериодного управления SCR

Типы коммутирования твердотельных реле

  1. Управление коммутационными действиями при переходе тока через ноль.

Рис. №8. Коммутация реле при переходе тока через ноль.

Используется для резистивной нагрузки в системах управления и контролирования нагревательных устройств. Использование в слабоиндуктивных и емкостных нагрузках.

  1. Фазовое управление твердотельным реле

Рис.№9. Схема фазного управления.

Основные показатели для выбора твердотельных реле

  • Ток: нагрузки, пусковой, номинальный.
  • Тип нагрузки: индуктивность, емкость или резистивная нагрузка.
  • Тип напряжения цепи: переменное или постоянное.
  • Тип сигнала управления.

Рекомендации по подбору реле и эксплуатационные нюансы

Токовая нагрузка и ее характер служат главным фактором, определяющим выбор. Реле выбирается с запасом по току, в который входит учет пускового тока (он должен выдержать 10-кратное превышение тока и перегруз на 10 мс). При работе с обогревателем номинальный ток превышает номинальный ток нагрузки не менее чем на 40%. При работе с электродвигателем запас по току рекомендован быть больше номинала не менее чем в 10 раз.

Ориентировочные примеры выбора реле при превышении тока

  1. Нагрузка активной мощности, например, ТЭН – запас 30-40%.
  2. Электродвигатель асинхронного типа, 10 кратный запас по току.
  3. Освещение с лампами накаливания – 12 кратный запас.
  4. Электромагнитные реле, катушки – от 4 до 10 кратного запаса.

Рис. №10. Примеры выбора реле при активной нагрузке по току.

Такой электронный компонент электрических цепей как твердотельное реле становиться обязательным интерфейсом в современных схемах и обеспечивает надежную электрическую изоляцию между всеми задействованными электроцепями.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Как выбрать полупроводниковое устройство?

Покупая твердотельное реле нужно обратить внимание на его основные характеристики:

  • Вид SSR.
  • Материал корпуса.
  • Тип включения – быстрый или постепенный.
  • Производитель.
  • Наличие крепежей.
  • Уровень потребления электроэнергии.
  • Размер ТТР.
  • Необходимо учесть коммутируемый регулятор напряжение.

Важно! Реле должно иметь большой запас мощности напряжения для его надежного и продолжительного использования. Иначе при скачке напряжения произойдёт поломка

Выполняя работы по проведению электрической системы помещения и устанавливая оборудование, вне зависимости от его масштабов, важно чтобы всё работало надежно и исправно

Осуществлению этого способствует полупроводниковое устройство

Выполняя работы по проведению электрической системы помещения и устанавливая оборудование, вне зависимости от его масштабов, важно чтобы всё работало надежно и исправно. Осуществлению этого способствует полупроводниковое устройство

При верном подборе типа SSR и правильной установке, оно будет долговечно

При верном подборе типа SSR и правильной установке, оно будет долговечно.

Последовательность работ выполняемых при замене реле

Для начала следует отключить питание от аккумуляторной батареи, потому что пока подключена электрическая цепь, демонтировать и разбирать стартер запрещено, иначе может произойти замыкание и вы сожжете всю проводку.

  • Перед разборкой хорошо очищаем стартер от пыли и грязи, что бы потом грязь не попала во внутрь.
  • Откручиваем гайку щеточного узла с болта тягового реле и снимаем контакт с болта.
  • Откручиваем стяжные винты крепящие реле к массе и вытаскиваем его.
  • Откручиваем с торца гайки и разделяем его на две части
  • Вытаскиваем старый сердечник меняем на новый
  • Собираем все во обратном порядке устанавливаем втягивающее
  • Проверяем весь механизм и ставим на машину

После того как все детали установили на авто проверяем еще раз на работоспособность, что бы быть уверенным, что мы все сделали правильно и у нас все работает должным образом.

Устройство твердотельного реле

Современные твердотельные реле (ТТР) представляют собой модульные полупроводниковые приборы, являющиеся силовыми электропереключателями.

Ключевые рабочие узлы этих устройств представлены симисторами, тиристорами или транзисторами. ТТР не имеют подвижных частей, чем отличаются от электромеханических реле.


Размер твердотельного реле во многом зависит от максимально допустимой нагрузки и возможности отводить тепло путем теплопередачи и конвекции (+)

Внутреннее устройство этих приборов может сильно различаться в зависимости типа регулируемой нагрузки и электрической схемы.

Простейшие твердотельные реле включают такие узлы:

  • входной узел с предохранителями;
  • триггерная цепь;
  • оптическая (гальваническая) развязка;
  • переключающий узел;
  • защитные цепи;
  • узел выхода на нагрузку.

Входной узел ТТР представляет собой первичную цепь с последовательно подключенным резистором. Предохранитель в эту цепь встраивается опционально. Задача узла входа – принятие управляющего сигнала и передача команды на коммутирующие нагрузку переключатели.

При переменном токе для разделения контролирующей и основной цепи применяют гальваническую развязку. От её устройства во многом зависит принцип работы реле. Ответственная за обработку входного сигнала триггерная цепь может включаться в узел оптической развязки или располагаться отдельно.

Защитный узел препятствует возникновению перегрузок и ошибок, ведь в случае поломки прибора может выйти из строя и подключенная техника.

Основное предназначение твердотельных реле – замыкание/размыкание электрической сети с помощью слабого управляющего сигнала. В отличие от электромеханических аналогов, они имеют более компактную форму и не производят в процессе работы характерных щелчков.

Процесс установки

  1. Подготавливаем проводку. Обжимаем разъемы.
  2. Новое реле стартера ВАЗ 2110 необходимо смонтировать под капотом в таком месте, чтобы его точно не заливало водой из луж и дождем. Многие специалисты устанавливают реле на шпильку бачка омывателя.
  3. Выводим провод с реле к стартеру и подключаем его на место красного провода (он с «папой»). Это место подключения тягового реле. Таким образом мы запитали катушку нового реле.
  4. На плюсовой вывод стартера накидываем новый провод с кольцевым разъемом 8 (мм) и плотно притягиваем его болтиком. Этот провод подходит на контакт 87 в новом реле. Надеюсь, схема подключения стартера ВАЗ 2110 понятна всем.
  5. От нового реле на контакте 30 тянем провод с разъемом «мам» к стартеру, на место подключения тягового реле.
  6. Повод от контакта 85 на новом реле накидываем на массу.
  7. Всю проводку закрываем гофрированным рукавом и хорошенько изолируем, чтобы проводка и контакты не подвергались воздействию влаги.
  8. Делаем пробный заезд.

Все, дополнительное реле стартера ВАЗ 2110 (схема прилагается) удачно установлено.

Особенности процесса изготовления

Рекомендуется заключать все элементы схемы в металлический корпус, чтобы охлаждение происходило намного лучше. Для надежности нужно заливать короб при помощи клеевого пистолета. Главное при работе – это правильно подобрать металлическую подложку, чтобы обеспечить наилучшее отведение тепла. Для изготовления используется опалубка, в которую заключается твердотельное реле постоянного тока. Своими руками ее изготовить можно из любого материала.

Идеально подойдет пластиковая коробка или отрезок трубы. Все зависит от того, какой размер у изделия. Металлическая подложка должна размещаться в этой опалубке. Тщательно нужно залить клеем все элементы схемы, отверстия в корпусе, чтобы обеспечить качественную изоляцию

Обратите внимание на то, что у симисторов выводы обычно неоднозначно определяются, поэтому их нужно заранее проверить. Для проверки открытия симистора необходимо использовать мегомметр

Как только симистор откроется, сопротивление изменится от нескольких десятков мегаом до 1-2 кОм.

Преимущества и недостатки ТТР

Твердотельные реле не зря вытесняют с рынка обычные пускатели и контакторы. Эти полупроводниковые приборы обладают множеством преимуществ перед электромеханическими аналогами, которые заставляют потребителей останавливать выбор именно на них.

Реле для микросхем имеет компактные размеры и сильно ограничены по максимально пропускаемому току. Крепятся они преимущественно путем припаивания специальных ножек

К таким достоинствам относят:

  1. Низкое потребление электроэнергии (на 90% меньше).
  2. Компактные габариты, позволяющие монтировать устройства в ограниченном пространстве.
  3. Высокая скорость запуска и отключения
  4. Пониженная шумность работы, отсутствуют характерные для электромеханического реле щелчки.
  5. Не предполагается техническое обслуживание.
  6. Длительный срок службы благодаря ресурсу в сотни миллионов срабатываний.
  7. Благодаря широким возможностям по модификации электронных узлов, ТТР имеют расширенные сферы применения.
  8. Отсутствие электромагнитных помех при срабатывании.
  9. Исключается порча контактов вследствие их механического удара.
  10. Отсутствие прямого физического контакта между цепями управления и коммутации.
  11. Возможность регулирования нагрузки.
  12. Наличие в импульсных ТТР автоматических цепей, защищающих от перегрузок.
  13. Возможность использования во взрывоопасных средах.

Указанных преимуществ твердотельных реле не всегда достаточно для нормальной работы оборудования. Именно поэтому они ещё не полностью вытеснили электромеханические контакторы.

Для стабильной работы мощных твердотельных реле важен эффективный отвод тепла, потому что при повышенных температурах резко искажается напряжение нагрузки (+)

ТТР имеют и недостатки, которые не позволяют им использоваться во многих случаях.

К минусам относят:

  1. Невозможность работы большинства устройств с напряжениями свыше 0,5 кВ.
  2. Высокая стоимость.
  3. Чувствительность к высоким токам, особенно в пусковых цепях электродвигателей.
  4. Ограничения по использованию в условиях повышенной влажности.
  5. Критическое снижение рабочих характеристик при температурах ниже 30°С мороза и выше 70°С тепла.
  6. Компактный корпус приводит к избыточному нагреву устройства при стабильно высоких нагрузках, что требует применения специальных устройств пассивного или активного охлаждения.
  7. Возможность расплавления устройства от нагрева при коротком замыкании.
  8. Микротоки в закрытом состоянии реле могут быть критическими для работы оборудования. Например, подключенные в сеть люминесцентные лампы могут периодически вспыхивать.

Таким образом, твердотельные реле имеют определенные сферы применения. В цепях высоковольтного промышленного оборудования их использование резко ограничено из-за несовершенных физических свойств полупроводниковых материалов.

Однако в бытовой технике и автомобильной промышленности ТТР занимают прочные позиции за счет своих положительных свойств.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий